

Assesing the Impacts by Pan-European TIMES Model

Markus Blesl

Universität Stuttgart

MODEDR Conference, Praha

24th November 2009

¹ Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart

Categories of energy models

Goals of the TIMES development

- + All processes and technologies depictable on subannual level
- + Any desired time resolution possible
- + Changes in the model horizon possible (distinction between input and model data)
- + Flexible process description
- + Easy extension of model features

ETSAP

IEA (International Energy Agency)

Development

- By ETSAP
- Implementation in GAMS

Applications of the model

- IER:
 - Ostfildern (local)
 - Baden-Württemberg
 - Bavaria
 - Saxonia
 - Hessen
 - Germany (TIMES-D)
 - European electricity and gas sector model (TIMES-EG)
 - European energy system model (TIMES PanEU)
 - Global model (ETSAP-TIAM)
- Other places:
 - Finland (VTT, Helsinki)
 - Belgium (KUL, Leuven)
 - Italy (Turin)
 - South Africa model, Village model (ERC, Cape Town)
 - EU-NEEDS project
 - Global models (EFDA, ETSAP-TIAM)

Methodology

- Bottom-up Model
- Perfect competition
- Perfect foresight
- Optimization (LP/MIP/NLP)

Min/Max Objective function s.t. Equations, Constraints

Decision Variables <=> Solution Input parameters

TIMES (The Integrated MARKAL EFOM System)

Advanced Features/Variants

- Elastic demands
- Endogeneous learning
- Discrete capacity expansion
- Macroeconomic linkage
- Climate extension
- Stochastic programming
 - Alternative objective functions
 - Multi-criteria optimization

Fundamental features of TIMES

- Model structure
 - i. Flexible time horizon
 - ii. User-defined time slice resolution within a year
 - iii. Multi-regional
- Model formulation
 - i. Partial Equilibrium Model
 - ii. Technology description:
 - 1. Single process type with access to all model features
 - 2. Vintaged technology properties
 - 3. Transformation eqn with overall and commodity-specific efficiencies
 - iii. Objective function:
 - 1. Different treatment of technology investments based on investment lead time
 - 2. Other opimization functions than total system costs can be defined by modeller
- User constraints
 - i. Framework to formulate virtually any linear relationship between decision variables

Markus Blesl

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

Markus Blesl

Steam

Residential

Interdependencies in the energy system Electricity District Hear

At optimal solution:

· Equilibrium between electricity supply and demand

Changes in the system (e.g. phase-out of nuclear) yield new equilibrium e.g.:

- 1) Missing nuclear substituted by coal (or natural gas, renewables in CO₂ reduction scenario)
- 2) Increase in electricity price (and CO₂ certificate price)
- 3) Substitution of electricity in the end-use sectors

Interdependencies in the energy system

Dynamic model

14 / 58

Objective function: List of cost components

	•	Discounted sum of the annual costs minus revenues:
Construction		+ Investment costs
Construction		+ Costs for sunk material during construction time
ĺ		+ Variable costs
Operation		+ Fix operating and maintenance costs
operation		+ Imports
		+ Taxes
Decommissioning		+ Surveillance costs
		+ Decommissioning costs
Operation {		- Subsidies
•		- Exports
Decommissioning		- Recuperation of sunk material
Construction {		- Salvage value
	•	Distinction between technical and economic lifetime
	•	General discount rate (discounting to base year) and technology specific discount rate (calculating annuities)
	•	Investment and decommissioning lead-times
Markus Blesl		TIMES PanEU

Model formulation of TIMES

	Objective function:	Minimizing discounted system costs = Sum of • Import-/Extraction costs, • variable and fix OM costs, • Investment costs, •	Decision variables
Input data Cost data Efficiencies Full load hours Emission factors Demand 	Model equations (auto-generated):	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Results Energy/Emission flows New capacities System Costs, Prices

The Pan-European model (TIMES PanEU)

- PEM is a, 30 region (EU 27 + NO, CH, IS) partial equilibrium energy systems, technology oriented bottom-up model.
- Time horizon: 2000-2050
- 12 time slices (4 seasonal, 3 day level)
- GHG: CO2, CH4, N2O, SF6
- Others pollutants: SO2, NOx, CO, NMVOC, PM2.5, PM10
- The database integrates results of LCI and specific Damages with the aim to integrate the treatment of Externalities in the optimization procedure

The Pan-European Model (2)

- SUPPLY: Explicit modeling of reserves, resources, exploration and conversion
- Electricity:
 - **1.** Public electricity plants, CHP plants, heating plants, auto-producers
 - 2. Country specific renewable potential and availability (onshore / offshore wind, geothermal, biomass, solar, hydro)
 - 3. Country specific characterization of conversion technologies (in-use and new)
- DEMAND: is based on a simulation routine linked with GEM-E3 /NEWAGE
 - **1.** Agriculture
 - 2. Industry: Energy intensive industry (iron and steel, aluminum, copper, ammonia and chlorine, cement, glass, lime, pulp and paper), Other industries
 - 3. Residential and Commercial: Space heating/cooling, water heating, appliances and others)
 - 4. Transport: Passenger, Freight (different transport modes: cars, buses, motorcycles, trucks, passenger trains, freight trains) Air, Navigation.
 - **5.** Country specific characterization of end-use technologies

Universität Stuttgart

The Environment of the Energy Transformation Sector in TIMES PanEU

Fuel Production	Energy Transformation Energy Consumption
 Reserves, quantities and costs of domestic energy carriers 	• Electricity, district heat and process heat transformation • Sektors: Residential, Commercial, Industry, Transport, Upstream
 Import and export cost potential curves 	 Three electricity grid levels with losses and transmission costs Demand for effective energy and production goods and transport demand
 Refiniery processes 	Public main activity producers and industrial autoproducers Public main activity Pu
Emissions of fuel transformation	• Endogenous electricity trade / • Energy saving potentials

Interregional Electricity Trade in TIMES PanEU

- Endogenous trade between Regions
 - Bidirectionale trading processes → no simultaneous import and export between regions in the same time slice
 - Interconnection capacities according to ETSO
 - Trade driven by marginal electricity generation costs per time slice and transmission costs (incl. losses)
 - Limitted trade in peak time slice, since import capacities not secure (auctioning of interconnection capacities at various European borders)
- Exogenous trade with non-EU countries
 - e. g. Poland Ukraine
 - constant trade quantities over modeling horizon at 2005 level

Energy Generation Units in TIMES PanEU

Existing Capacities

- Clusterd by fuel and technologies for public and industrial generation units
- Country specific decommissioning curves

Commissioning Capacities

- Technology database for public and industrial power plants, CHP and heating plants
- Commisssioning of electricity gerneration units in industry sector as CHP plants with coupled production of process heat and steam
- Country specific restrictions concerning fuel use and unit size of power plants
- Nuclear phase out in DE, BE, SE, ES, NL as well as commissining of new capacity only in coutries with existing nuclear capacity (except PL)
- Minimum electricity quantities from renewable energy resources according national policies

Markus Blesl

Technology Database – New Public Fossil Power Plants (excerpt)

Hard Coal

- PCC condensing 350 / 600 / 800 MW
- PCC CCS Post Combustion 560 MW
- IGCC 450 MW
- IGCC CCS 425 MW
- Oxyfuel 600 MW
- Extraction Condensing CHP 200 / 500 MW
- IGCC CHP with CCS

CO₂ Storage Potentials of selected European Countries

	Oil Fields ¹	Gas Fields ¹	Aquifers ¹	Coal Seams ²
	Mt CO ₂	Mt CO ₂	Mt CO ₂	Mt CO ₂
Denmark	176	452	16000	
Germany	103	2227	23000 - 43000	4400
Greece	17	0	2200	
Netherlands	54	10907	1600	5700 - 39700
Norway	3453	9156	13000	
UK	3005	7451	15000	
France				590 – 860

- Total Europe: 122 Gt CO₂
 - Saline aquifers 54%
 - Depleted oil and gas fields 32%
 - Enhanced coal bed methan recovery 14%

Technology Database – Renewable Power Plants (excerpt)

Biomass / Biogas	<u>Hydro</u>		
Internal combustion engines biogas	 Run of river small / medium / large 		
Fuel cell biogas	Dam storage large		
Condensing CHP wood, straw	Pump storage		
Internal gasification wood			
IGCC CCS Biomass			
Wind and Solar	Other Renewable		
 Wind and Solar Wind onshore (differentiated by three wind 	Other Renewable • Geothermal Hot dry rock		
 Wind and Solar Wind onshore (differentiated by three wind classes) 	Other Renewable • Geothermal Hot dry rock • Geothermal Steam turbine		
Wind and Solar• Wind onshore (differentiated by three wind classes)• Wind offshore	Other Renewable • Geothermal Hot dry rock • Geothermal Steam turbine • Tidal stream generator		
Wind and Solar• Wind onshore (differentiated by three wind classes)• Wind offshore• Solar PV (roof and plant size)	Other Renewable • Geothermal Hot dry rock • Geothermal Steam turbine • Tidal stream generator • Wave energy converter		
Wind and Solar• Wind onshore (differentiated by three wind classes)• Wind offshore• Solar PV (roof and plant size)• Solar thermal	Other Renewable • Geothermal Hot dry rock • Geothermal Steam turbine • Tidal stream generator • Wave energy converter		

"Hot Spots" of Renewable Energy Production in Europe

🛛 Hydro small + large 🔟 Wind onshore 🖸 Wind offshore 🖪 Geothermal 🔯 Photovoltaic 📮 Solarthermal 🖉 Waste 📮 Biomass gas / liquid 🖬 Biomass solid 🚍 Tide + Wave

General structure of the industry

Energy intensive Industry

- Iron&Steel
- Aluminium
- Copper
- Cement
- Ammonia
- Chlorine
- Lime
- Glass
- Pulp&Paper

Other Industries

- Other nonferrous metals
- Other chemicals
- Other non-metallic minerals
- Other Industries

General structure of the industry

Energy intensive Industry

- Process orientated Reference Energy System (RES)
- Demand of final products in natural units (Mt)
- Demand based on a simulation routine linked with GEM-E3 / NEWAGE

Other Industries

- Standard structure
- Mix of 5 main energy uses (Steam, Process Heat, Machine Drive, Electrochemical, Others)
- Fuel demand (PJ)
- Demand based on a simulation routine linked with GEM-E3 / NEWAGE

Energy intensive Branches: Iron&Steel

Process step	Available technologies		
Finished steel	 Finishing process 		
Crude steel	• Blast Oxygen Furnace regular (base; CCS),		
	 Blast Oxygen Furnace scrap 		
	 Electric arc furnace, EAF for DRI 		
	 Cast iron cupola 		
Row Iron	 Iron blast furnace (base; direct coal injection); 		
	COREX, Sponge Iron for DRI, Cyclone Converter		
	Furnace		
Pellet production	 Pellet production 		
Sinter production	 Sinter production 		

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

COK-Coke; Gas- Natural Gas; COG- Coke-Oven Gas; COA- Hard coal; BFG- Blast Furnace Gas; ELC- Electricity; LPG- Liquefied Petroleum Gas; OXY- Oxygen; HFO- Heavy Fuel Oil; LFO- Light Fuel Oil; HTH- High Temp. Heat; RIR- Raw Iron; SCR- Scrap Iron; RFC- Ferrochrome; QLI- Quick Lime; SNT- Sinter; PLT- Pellet; CST- Crude Steel; ORE- Ore; IIS- Iron and Steel Demand; DIR- DRI Iron; BFS- Blast Furnace slag

TIMES PanEU

IER

Energy intensive Branches: Paper&Pulp

Process step	Available technologies
Production of high quality paper	 High quality production process
Production of low quality paper	 Low quality production process
Pulp production	 Mechanical pulp production Chemical pulp production Recycling pulp production

Institut für Energiewirtschaft und Rationelle Energieanwendung

Universität Stuttgart

IIX

32 / 58

Heat supply in industry sector

Possibilities of HEAT supply

- Public district heat
- Industrial CHPs
- Boiler (modeled as boilers for branches (BY) and generic industrial boiler (> 2000)
- Kilns (for extra high temperature) [separate heat commodity]

Residential and Commercial Sectors

RSD Demand categories	COM Demand categories			
Space Heating	Space Heating			
Water Heating	Water Heating			
Space Cooling	Space Cooling			
Lightning	Lightning			
Cooking	Cooking			
Refrigeration	Refrigeration			
Cloth Washing	Public Lightning			
Cloth Drying	Other Electric			
Dish Washing	Other Energy			
Other Electric				
Other Energy				

Technology options (examples)

 Heat pumps, Fuel Cells, Biomass based Heating Systems, Energy Saving Lamps, Energy Saving Options (Improved Building Isolation)...

Structure of the Transport Sector in the TIMES Pan EU Model

Implemented Transport Technologies

Fuel/Vehicle	Car	Bus	Truck	Motocycle	Rail	Aviation	Navigation
Gasoline	+*	+*	+*	+*		+	
hybrid	+*		+*				
plug in hybrid	+*						
Diesel	+*	+*	+*		+*		+
hybrid	+*	+*	+*				
plug in hybrid	+*						
Ethanol (E85)	+	+	+				
hybrid	+		+				
plug in hybrid	+						
Biodiesel	+	+	+		+		
FT-Diesel (BTL/GTL/CTL)	+	+	+			+	+
Electricity	+			+	+		
LPG	+						
Natural Gas/Biogas	+	+	+				
hybrid	+	+					
plug in hybrid	+						
Methanol IC	+	+	+				
Methanol FC	+						
Dimethyleter	+	+	+				
Kerosene						+	
Heavy fuel oil							+
Hydrogen (g) IC	+						
Hydrogen (g) FC	+	+	+				
hybrid	+	+	+				
Hydrogen (I) IC	+						

+ implemented

* Blending with biofuels or synthetic fuels possible

Objective and Scope

The Energy and Climate Package aims at achieving 20-20-20-2020 via

- EU Emission Trading Scheme: -21% GHG in 2020 compared to 2005
- Non-ETS: -10% GHG in 2020 compared to 2005
- RES: 20% of final energy consumption in 2020

Assessment of the...

- Proposed target distinctions for ETS and Non-ETS
- Effort sharing proposals between member states
- Role of the RES target, including its national allocation

..... and what happens beyond ?

Optimal burding sharing in 2020

Markus Blesl

Optimal burding sharing in 2020 (and before the economic crises)

Markus Blesl

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

Optimal share between ETS and Non-ETS reduction 2020

Optimal RES Allocation vs. EU-Targets

Dependency of the CO₂ reduction potential on the spec. CO₂ certificate price

Scenario analysis

1. Baseline case (REF)

- No emission reduction measures
- Nuclear phase out according policy of respective EU countries
- Minimum renewable energy use

2. **BEST** climate policy on global trade

- EU 20-20 target
- GHG emission reduction from 2020 linear to -39% by 2050

3. Second Best

- EU 20-20 target
- GHG emission reduction from 2020 linear to -50% by 2050

4. Second Best VAR

- EU 20-20 target
- GHG emission reduction from 2020 linear to -50% by 2050
- Limit the ETS part to stress the Non-ETS sector

Scenario Comparison, EU27: Net Electricity

Scenario Comparison, EU27: Net electricity generation installed capacity [GW]

Scenario Comparison, EU27: Net Electricity Imports 250

Scenario Comparison, EU27: Electricity Prices

48 / 58

Scenario definition and white certificates

Scenario	Description
REF	 Business as usual [Reference case]
	 -21% CO₂ reduction till 2020 in ETS sector
FEC	 -21% CO₂ reduction till 2020 in ETS sector
	 Reduction target Final Energy Consumption [white certificates for FEC]
FEC_450ppm	 -21% CO₂ reduction till 2020 in ETS sector + 450ppm target till 2050
	Reduction target Final Energy Consumption [white certificates for FEC]
PEC	 -21% CO₂ reduction till 2020 in ETS sector
	 Reduction target Primary Energy Consumption [white certificates for PEC]
PEC_450ppm	 -21% CO₂ reduction till 2020 in ETS sector + 450ppm target till 2050
	 Reduction target Primary Energy Consumption [white certificates for PEC]

Net electricity generation by technology (EU-27)

Key effects:

• FEC: Increase of public generation from condensing power plants/ decrease auto production (industry)

• **PEC:** Increase public CHP/ decrease public condensing plants (total

• 450ppm: Increase of electricity generation in both scenarios

Final energy consumption (EU-27)

Reduction final energy consumption by sector (EU-27) [scenario FEC compared to REF]

Key effects:

reduction mainly in residential and industry (main driver: space and process heat supply)

• 2025: also clear reduction in commercial sector

• Transport: no clear reduction before 2040

Burden sharing: Reduction of primary energy consumption [scenarios compared to REF in 2020]

Key effects:

• Key driver: the main influence has the conversion/ production sector, especially the electricity generation

• Burden sharing: according to changes in electricity generation (less nuclear/coal); also changes in electricity trade

Final Energy Consumption (CZ)

FEC Industry (CZ)

Net electricity generation (CZ)

56 / 58

CO₂- Emissions (CZ)

Conclusions

- The development of the Czech energy system is not independent of the EU27 policy and the energy policy in the other member states.
- The economic development or in general the requested demand influence on the same level the future energy system as the technology development and availability. A linkage between a CGE model can fill this gap.
- In the period between 2030 and 2050 the level of the GHG reduction target for the EU27 depends on the possibility of cost effective world wide reduction potentials. In general additional policy measures which are reducing the flexibility of the energy systems are not cost efficient.

Thank you for your attention !

IER Institut für Energiewirtschaft Rationelle Energieanwendung Heßbrühlstr. 49a, 70565 Stuttgart Tel.: +49 711 / 685 878 65 E-mail: Markus.Blesl@ier.uni-stuttgart.de